Comparison of Sulphate-reducing Bacterial Communities in Japanese Fish Farm Sediments with Different Levels of Organic Enrichment
نویسندگان
چکیده
Fish farm sediments receive a large amount of organic matter from uneaten food and fecal material. This nutrient enrichment, or organic pollution, causes the accumulation of sulphide in the sediment from the action of sulphate-reducing bacteria (SRB). We investigated the effect of organic enrichment around coastal fish farms comparing the SRB community structure in these sediments. Sediment samples with different levels of organic pollution classified based upon the contents of acid-volatile sulphide and chemical oxygen demand were collected at three stations on the coast of western Japan. The SRB community composition was assessed using PCR amplification, cloning, sequencing and phylogenetic analysis of the dissimilatory sulphite reductase b-subunit gene (dsrB) fragments using directly extracted sediment DNA. Sequencing of the cloned PCR products of dsrB showed the existence of different SRB groups in the sediments. The majority of dsrB sequences were associated with the families Desulfobacteraceae and Desulfobulbaceae. Clones related to the phylum Firmicutes were also detected from all sediment samples. Statistical comparison of sequences revealed that community compositions of SRB from polluted sediments significantly differed from those of moderately polluted sediments and unpolluted sediments (LIBSHUFF, p<0.05), showing a different distribution of SRB in the fish farm sediments. There is evidence showing that the organic enrichment of sediments influences the composition of SRB communities in sediments at marine fish farms.
منابع مشابه
Environmental issues of fish farming in offshore waters: perspectives, concerns and research needs
Offshore fish farming is predicted to increase in the near future driven by the lack of coastal space. In this review I discuss the environmental issues of offshore farming from experience in coastal farms. Even more so than in coastal farms, a rapid and wide dispersal of dissolved waste products is predicted for offshore farms. Despite wider dispersal of particulate waste products, fast sinkin...
متن کامل16S rRNA gene-based molecular analysis of mat-forming and accompanying bacteria covering organically-enriched marine sediments underlying a salmon farm in Southern Chile (Calbuco Island)
The mat forming bacteria covering organic matter-enriched and anoxic marine sediments underlying a salmon farm in Southern Chile, were examined using 16S rRNA gene phylogenies. This mat was absent in the sea bed outside the direct influence of the farm (360 m outside fish cages). Based on nearly complete 16S rRNA gene sequences (~1500 bp), matforming filamentous cells were settled as the sulphu...
متن کاملPhosphorus Chemistry and Bacterial Community Composition Interact in Brackish Sediments Receiving Agricultural Discharges
BACKGROUND External nutrient discharges have caused eutrophication in many estuaries and coastal seas such as the Baltic Sea. The sedimented nutrients can affect bacterial communities which, in turn, are widely believed to contribute to release of nutrients such as phosphorus from the sediment. METHODS We investigated relationships between bacterial communities and chemical forms of phosphoru...
متن کاملBacterial strains resistant to inorganic and organic forms of mercury isolated from polluted sediments of the Orbetello Lagoon, Italy, and their possible use in bioremediation processes
Bacteria are able to adapt to heavy metals in contaminated environments, by developing specific mechanisms of resistance. A mercury (Hg)-resistant bacterial community was isolated from polluted sediments of the Orbetello Lagoon, Italy. The members of the Hg-resistant bacterial community showed high levels of resistance both to the inorganic and to the organic forms of Hg. 16S rRNA gene sequenci...
متن کاملEnvironmental controls on the speciation and distribution of mercury in coastal sediments
Methylmercury production by sulfate reducing bacteria in coastal sediments leads to bioaccumulation of mercury in fish, shellfish, and ultimately humans. Sulfur, organic carbon, and sediment structure and composition can all affect methylmercury production by changing the amount of bioavailable inorganic mercury and by stimulating the activity of methylating microbes. This study investigates to...
متن کامل